4438x亚洲视频最新免费

模具设计与制造毕业设计说明书.doc

返回 相似
模具设计与制造毕业设计说明书.doc_第1页
第1页 / 共62页
模具设计与制造毕业设计说明书.doc_第2页
第2页 / 共62页
模具设计与制造毕业设计说明书.doc_第3页
第3页 / 共62页
模具设计与制造毕业设计说明书.doc_第4页
第4页 / 共62页
模具设计与制造毕业设计说明书.doc_第5页
第5页 / 共62页
点击查看更多>>
资源描述:
摘要 本说明书共分为三章。 第一章,主要叙述了模具工业的发展史。首先介绍模具工业在经济发展中的重要性,再从三个方面阐述了模具工业的发展史。简单介绍了如何分析冲裁零件。 第二章,电极板冲孔模设计部分。这部分介绍了电极板的结构工艺性分析,冲孔、落料的模具结构。并结合设计零件的实际结构、功能与用途,经过理论计算确定了比较合理的零件加工工艺,设计出了主要零件图。此次设计是对以前所血理论知识的一次比较系统的实际演练。 第三章,注塑模部分设计。这部分主要是隐形眼镜清洗盒的模具设计,通过对塑件进行工艺性的分析和比较,最终设计出一副塑料注塑模。本设计从产品的结构工艺性、具体模具结构出发,对模具的浇注系统、注塑机的选择及有关参数的校核、模具成型部分的结构设计和计算、脱模推出机构等都有详细的设计。针对清洗盒的具体结构,并考虑经济性设计出这套注塑模。其优点是机构简单,模具外形小,生产效率高,模具的制造成本低。通过模具设计表明该模具能达到清洗盒的质量和加工工艺要求。 关键词模具历史;冲压模;注塑模 Abstract specifications is three chapters together mark. The first chapters , the phylogeny having narrated mould industry s mainly. Introduce mould industry phylogeny having set forth mould industry again from three aspect in significance in economic growth first. How analyse according to cutting a part that the simplicity has been introduced. Second chapters , electrode board punched hole models design a part. This part has introduced unnatural electrode structure manufacturability analysis, punched hole , the blank mould structure. And link structure , function designing the part reality with use, by that theory calculates picture having ascertained the comparatively rational part processing handicraft , having designed out the main part. Design a comparatively systematic reality being institute blood theory knowledge to the previously this time drilling. Third chapters, produce plastic articles by injection moulding the model part designs that. This part is that the haptic lens washes the box design for die and mould mainly , pass to analysis and comparison moulding the manufacturability being in progress piece, model designing that a set of plastic produces plastic articles by injection moulding out ultimately. Design that structure sets off from product structure manufacturability , concrete mould originally, both the physical design to mould choice pouring system , the injection machine and school core , mould about parameter molding part and secretly scheming against , demould debuting organization and so on have detailed design. Specifically for the structure cleaning the box concre, and think that economy designs that this produces plastic articles by injection moulding set out model. Whose merit is that organization is simple , mould external is small , the efficacy is high, the mould cost of manufacture is low. Can reach the mass cleaning a box s and process technological requirements by the fact that design for die and mould indicates that mould. Keywords Mold history , the stamping model, produce plastic articles by injection moulding mold 目录 第一章 综述 ························································ 1 概述 ························································· 2 如何分析冲裁零件··············································· 第二章 电极板冲孔模的设计··········································· 1 产品简介······················································· 2 电极板冲孔模设计的前期准备····································· 2.1研究设计任务··············································· 2.1.1阅读冲裁件产品零件图···································· 2.1.2分析冲裁件零件········································· 2.1.3冲裁加工的经济性分析··································· 3 电极板冲孔模总体方案的确定····································· 3.1电极板冲孔模类型的确定····································· 3.1.1三种方案················································ 3.1.2分析论证················································ 3.2结构形式的确定············································· 3.2.1操作方式选择············································ 3.2.2等位方式的选择·········································· 3.2.3卸料方式················································ 4 电极板冲孔工艺计算············································ 4.1凸凹模刃口尺寸计算········································ 4.1.1凸凹模刃口尺寸计算原则·································· 4.1.2简单形状凸凹模刃口尺寸的计算···························· 4.2冲压里的计算·············································· 4.2.1计算冲裁力·············································· 4.2.2计算卸料力、推件力······································ 4.2.3计算冲压力总和·········································· 4.3初选压力机················································ 4.3.1压力机类型的选择········································ 4.3.2压力机规格的选择········································ 4.4压力中心的计算············································· 4.4.1简单形状压力中心········································ 4.4.2多凸模的压力中心········································ 5电极板冲孔模主要零部件设计计算································· 5.1凹模的设计计算············································· 5.1.1凹模孔口的设计·········································· 5.1.2凹模外型结构的设计······································ 5.1.3凹模凹模外型尺寸的计算·································· 5.1.4凹模的固定方法·········································· 5.2固定板的实际计算··········································· 5.2.1凹模固定板的设计······································· 5.2.2凸模固定板的设计········································ 5.3卸料板的设计计算··········································· 5.3.1卸料板的类型选择········································ 5.3.2卸料板的尺寸············································ 5.4定位零件的设计计算········································· 5.4.1定位板的结构············································ 5.4.2定位板尺寸的计算········································ 5.5弹性元件设计计算··········································· 5.5.1橡胶垫的自有高度········································ 5.5.2橡胶垫的直径············································ 5.6凸模的设计计算············································· 5.6.1凸模的结构设计·········································· 5.6.2凸模尺寸的计算·········································· 5.7电极板冲孔模其他零件的设计和选择··························· 5.7.1模座的设计·············································· 5.7.2模柄的设计·············································· 5.8电极板冲孔模闭合高度的计算································· 5.9压力机的选择··············································· 第三章 隐形眼睛清洗盒注塑模的设计 ·································· 1 拟定模具的结构形式············································· 1.1塑件成型工艺分析··········································· 1.2分型面位置的确定··········································· 1.3确定型腔数量和排列方式····································· 1.3.1型腔数量的确定·········································· 1.3.2型腔排列形式的确定······································ 1.4模具结构形式的确定········································· 1.5注射机型号的选定··········································· 1.5.1注射量的计算············································ 1.5.2投影面积及所需锁模力的计算······························ 1.5.3选择注射机·············································· 1.5.4注射机有关参数的校核···································· 2浇注系统的设计················································· 2.1主流道设计················································· 2.1.1主流道尺寸·············································· 2.1.2主流道衬套形式·········································· 2.1.3主流道凝料体积·········································· 2.1.4主流道剪切速率校核······································ 2.2分流道设计················································· 2.2.1分流道布置形式·········································· 2.2.2分流道尺寸长度·········································· 2.2.3分流道的形状、截面尺寸及凝料体积························ 2.2.4分流道剪切速率校核······································ 2.2.5分流道表面粗糙度········································ 2.3浇口的设计················································· 2.3.1潜伏式浇口尺寸的确定···································· 2.3.2浇口剪切速率的校核······································ 2.4冷料穴的设计··············································· 2.4.1主流道冷料穴············································ 2.4.2分流道冷料穴············································ 3成型零件的设计················································· 3.1成型零件的结构设计········································· 3.1.1凹模设计················································ 3.1.2型芯设计················································ 3.2成型零件钢材的选用········································· 3.3成型零件工作尺寸的计算····································· 3.3.1型腔径向尺寸············································ 3.3.2型芯径向尺寸············································ 3.4成型零件强度及支承板厚度计算······························· 3.4.1型腔侧壁的厚度········································· 3.4.2支承板的厚度··········································· 4 模架的确定····················································· 4.1各模板尺寸的确定··········································· 5 排气槽的设计··················································· 6 脱模推出机构的设计············································· 7 温度调节系统的设计············································· 7.1冷却水的体积流量··········································· 7.2冷却水管道直径············································· 7.3冷却水在管道内的流速······································· 7.4冷却管道孔壁与冷却水之间的传热膜系数······················· 7.5冷却管道的总传热面积······································· 7.6模具上应开设的冷却水孔数··································· 参考文献 ··························································· 文献翻译 ···························································· 致谢································································· 第一章 综述 1 概述 工、模具材料是工模具加工业的基础。随着我国国民经济发展和人民生活水平的提高, 人们对产品的审美观,价值观也不断提高,从而对各类工、模具产品,无论是内在质量还是外表美观等方面均要求日益精臻,困此势必对工模具材料在数量上、系列上和质量上提出更 高的要求。中国的模具材料从无到有,从小到大,从少到多,直到现在,无论是从钢种还是从规格、标准化、系列化等方面,都是伴随着模具制造发展而发展的。 五十~七十年代(空白阶段) 在这三十年中,由于我国推行计划经济的模式和产业结构上依照前苏联的生产方式,模具制造纯属依附于企业的一个配件加工车间。再则由于工业发展的缓慢和经济封闭,以及人民的生活水平处于很低的消费水平等诸多因素,抑制了模具制造的产业化、社会化和商品化。由此而带来了模具制造业对其所采用的材料要求不高甚至没有要求,供需关系处于有什么用什么的不合理的混乱状态。 八十年代(发展阶段) 随着改革开放和国民经济的增长,很大程度上推动了模具制造业的发展。模具制造业已走出企业禁锢的状态,十年中,我国的仿制国外新钢种的同时,还在高校、科研院所和各钢厂的配合下,自行研制开发了一批适合我国国情的模具新钢种。不仅改善了加工性能,而且还大大提高了模具的使用寿命。仿制D2钢代替Cr12MoV制造冲压模,用P20钢代替45号钢制造塑料模型芯、型腔,使模具的光洁度和寿命都有了较大的提高。用H13钢代替国外已淘汰的3CW8V制造锻模和压铸模。在冷作模具钢方面,自行开发了65Nb、O12A、CG-2、LM1-2、LD、GD、GM、DS钢等品种。其中65Nb、LD、GD及DS钢因具有良好的抗冲击性而更适合于作冷墩及原料冲裁凸模。GM钢因有良好的耐磨性特别适合于作螺纹滚丝轮,与Cr12MoV相比,寿命可提高十多倍。除上述合金钢外,还开发了GT35及DT等牌号的钢结硬质合金和YG系列的钨钴类硬硬合金以满足高寿命的要求,制造高速冲床用的模具。在塑料模具钢方面,自行开发了易切削类的5NiCa、06Ni、SM1、SM2以及PMS、CPR、PCY等钢,都是一些具有良好加工、使用性能的优良钢种,并在使用上得到用户的认可。在热作模具钢方面Y4、Y10、HM-1、GR、ER8等新品种的开发和应用彻底改变了热作模具几十年来由3Cr2W8V一统天下的局面。 九十年代竞争阶段 随着我国国民经济的发展和产品的更新换代,我国已成为模具和模具材料的生产大国。据1997年统计,我国年耗模具材料13万吨,其中普钢4.5吨。这说明模具这个特殊的产品在近十年中从计划经济条件下的备件逐步发展成市场经济条件下的商品,并日益被模具制造商在其质量和品牌上得到重视。而作为一个工业日趋发展,产品交替更新节奏很快的国家,其对模具的发展也更进一步地被产品生产商重视。因此,一批过去已被研制成功的系列的能适应不同工况条件和产品制造要求的模具材料的开发、试制和生产成为各大特钢厂竞争相推出和竞争的市场热点。但是,模具材料由于其规格繁多,同规格单次需求量少,市场即时采购等特点,使得各大钢厂规模性生产装备无法适应。因此纷纷寻找合适的代理商以求得规模效应。可是,众多的代理商虽然手中握有厚资,但是对于模具工况条件,材料特性以及相关热处理等问题的了解不够,都停留于普钢类方面的激列竞争。另外,国外的资深代理机构和各著名钢厂近几年来组织重兵力图挤入中国的模具材料市场。如瑞典的NUDDEHOLM、ASSAB,以及德国的蒂森、萨斯特,日本的大同等公司都在上海乃至全国各地树起了优特钢的旗帜,但由于他们的价格过高,已逐渐显得无法展开规模销售,就连目前在国内较有名气的外资公司都在中国寻找价格低廉,品质优良的模具材料。 2 如何分析冲裁零件 冲裁件的工艺性是指零件在加工中的难易程度,在技术方面主要分析零件形状特点、尺寸大小、精度要求和材料性能等因素是否符合冲裁工艺的要求。良好的工艺性应保证材料消耗少、工序数目少、模具结构简单且寿命长,产品质量稳定、操作简单、方便等。在一般情况下对冲裁件工艺性影响最大的是冲裁结构尺寸和精度要求,如果发现零件工艺性不好,则应在不影响产品使用要求的前提下向产品开发部门提出修改意见,或在设计时采用相应的工艺方法,避免由于工艺性差而容易产生的问题。 另外,分析冲裁件零件图还要明确冲裁零件的难点所在,对于零件图上的极限尺寸、设计基准以及翘曲、毛刺大小和方向要求的要特别注意。因为这些因素对所需工序性质的确定、对工件定位方式、模具制造精度结构形式的选择都有较大影响。分析冲裁件工艺主要有以下几个方面 ①结构形状、尺寸大小 a、冲裁件结构形状是否简单、对称 b、冲裁件的外形或内孔的转角处是否有尖锐的清角。 c、冲裁件上是否有过小孔径。 d、冲裁件上是否有细长的悬臂和狭槽。 e、冲裁件上最大尺寸是多少属于大型、中型或小型。 f、冲裁件的孔与孔之间,孔与边缘之间距离是否过小。 ②尺寸精度、粗糙度、位置精度。 a、产品的最高尺寸精度是多少 b、产品的最高粗糙度时多少 c、产品的最高位置精度是多少 ③ 冲裁件材料的性能,分析产品的材料是否满足以下要求。 a、技术要求材料性能是否满足使用要求,是否适应工作条件。 b、冲压工艺要求材料的冲压性能如何,表面质量怎样,材料的厚度公差是否符合国家标准。 (3)冲压加工的经济性分析 ①产品的生产纲领 ②经济性 冲压加工方法是一种先进的工艺方法,因其产品质量稳定,材料利用率高,操作简单,生产率高等诸多优点而被广泛使用。由于模具制造成本高,冲压加工的单件成本主要取决于生产批量的大小,它对冲压加工的经济性起着决定性作用。批量越大,产品的单件成本就越低。批量小时,冲压加工的优越性就不明显。所以,要根据冲压件的生产纲领,进行冲压加工的经济性分析。通过工艺分析,如果发现冲裁件的工艺性差,应在不影响其使用性能的条件下,对零件的形状和尺寸做必要的、合理的修改,或说明在设计时如何注意容易产生的问题。 良好的冲压性能表现在材料消耗少,冲压时不必采取特殊的控制手段,工艺过程简单,模具结构简单、寿命较长,产品质量稳定、操作方便等。 第二章 电极板冲孔模的设计 1 产品简介 零件名称电极板 生产批量4000件/年 材料紫铜硬 料厚5mm 产品零件图 毛坯 零件图 2 电极板冲孔模设计的前期准备 前期准备工作主要包括阅读产品零件图,收集查阅有关设计资料,根据产品的原始数据研究设计任务,分析产品实施冷冲压加工的可能性、经济性。 2.1 研究设计任务 2.1.1 阅读冲裁件产品零件图 产品零件图是制定冲压工艺方案和模具设计的重要依据,在冲裁模设计之前,首先要仔细阅读冲裁件产品零件图,从产品的零件图入手,进行冲裁件工艺性分析和经济性分析。 从电极板冲孔零件图可知,它是由半成品毛坯经冲孔得到的零件。 2.1.2 分析冲裁件零件 冲裁件的工艺性是指零件在加工中的难易程度,在技术方面主要分析零件形状特点、尺寸大小、精度要求和材料性能等因素是否符合冲裁工艺的要求。良好的工艺性应保证材料消耗少、工序数目少、模具结构简单且寿命长,产品质量稳定、操作简单、方便等。在一般情况下对冲裁件工艺性影响最大的是冲裁结构尺寸和精度要求,如果发现零件工艺性不好,则应在不影响产品使用要求的前提下向产品开发部门提出修改意见,或在设计时采用相应的工艺方法,避免由于工艺性差而容易产生的问题。 另外,分析冲裁件零件图还要明确冲裁零件的难点所在,对于零件图上的极限尺寸、设计基准以及翘曲、毛刺大小和方向要求的要特别注意。因为这些因素对所需工序性质的确定、对工件定位方式、模具制造精度结构形式的选择都有较大影响。分析冲裁件工艺主要有以下几个方面 ①结构形状、尺寸大小 a、冲裁件结构形状是否简单、对称 b、冲裁件的外形或内孔的转角处是否有尖锐的清角。 c、冲裁件上是否有过小孔径。 d、冲裁件上是否有细长的悬臂和狭槽。 e、冲裁件上最大尺寸是多少属于大型、中型或小型。 f、冲裁件的孔与孔之间,孔与边缘之间距离是否过小。 此电极板是一个轴对称的简单冲孔件,内孔为园孔,无尖锐的清角,无细长的悬臂和狭槽。小孔Ø8.33mm与边缘之间的距离为20mm,大孔Ø14.3mm与边缘之间的距离为5.65mm。其两孔之间的距离为129.8mm,均满足最小壁厚要求。其中最大尺寸为162.6mm,属于中小型零件。最小尺寸为Ø8.33mm,不小于冲孔的最小孔径(1.0t5mm),所以电极板尺寸设计合理,满足工艺要求。 ②尺寸精度、粗糙度、位置精度。 a、产品的最高尺寸精度是多少 b、产品的最高粗糙度时多少 c、产品的最高位置精度是多少 零件图中两冲孔尺寸均未标注尺寸精度和位置精度,粗糙度也无要求。设计时一般按IT14级选取公差值,普通冲裁的冲孔精度一般在IT11IT12级以下,所以精度能够保证。 ③ 冲裁件材料的性能,分析产品的材料是否满足以下要求。 a、技术要求材料性能是否满足使用要求,是否适应工作条件。 b、冲压工艺要求材料的冲压性能如何,表面质量怎样,材料的厚度公差是否符合国家标准。 紫铜(硬)具有良好的导电性,满足电极板导电的使用要求。利用设计手册查处其抗剪强度t为240MPa抗拉强度6b为300MPa。具有良好的冲压性能,满足冲压工艺要求。 2.1.3 冲压加工的经济性分析 2.1.3.1 产品的生产纲领 年产量4000件/年 属于小批量生产。 2.1.3.2 经济性 冲压加工方法是一种先进的工艺方法,因其产品质量稳定,材料利用率高,操作简单,生产率高等诸多优点而被广泛使用。由于模具制造成本高,冲压加工的单件成本主要取决于生产批量的大小,它对冲压加工的经济性起着决定性作用。批量越大,产品的单件成本就越低。批量小时,冲压加工的优越性就不明显。所以,要根据冲压件的生产纲领,进行冲压加工的经济性分析。此零件精度要求低,生产批量小,所以采用无导向简单冲裁模进行冲压生产,就能保证产品的质量,满足生产要求,还能降低模具制造难度,降低生产成本。 通过工艺分析,如果发现冲裁件的工艺性差,应在不影响其使用性能的条件下,对零件的形状和尺寸做必要的、合理的修改,或说明在设计时如何注意容易产生的问题。 良好的冲压性能表现在材料消耗少,冲压时不必采取特殊的控制手段,工艺过程简单,模具结构简单、寿命较长,产品质量稳定、操作方便等。 3 总体方案的确定 确定工艺方案,主要是确定模具类型,包括确定冲压工序、工序的组合和工序顺序等。应在工艺分析的基础上,根据冲裁件的生产批量、尺寸精度的高低、尺寸大小、形状复杂程度、材料的厚薄、冲模制造条件与冲压设备条件等多方面因素,拟定多种冲压工艺,然后选出一种最佳方案。 3.1 电极板冲孔模类型的确定 3.1.1 一般冲裁模可以采用以下三种方案 方案一采用无导向简单冲裁模 方案二采用导板导向简单冲裁模 方案三采用导柱导向简单冲裁模 3.1.2 分析论证 方案一无导向简单冲裁模结构简单、尺寸小、质量轻、模具制造容易、成本低,但冲模在使用安装时麻烦,需要调试间隙的均匀性,冲裁精度低且模具寿命低。它适用于精度要求低、形状简单、批量小或试制的冲裁件。 方案二导板导向简单冲裁模比无导向简单冲裁模高、使用寿命较长、单模具制造较复杂、冲裁时视线不好。不适合单个毛坯的送料、冲裁。 方案三导柱导向简单冲裁模导向准确、可靠,能保证冲裁间隙均匀、稳定,因此冲裁精度比导板模高,使用寿命长。但比前两种模具成本高。 由于电极板批量小、精度低,故采用无导向简单冲裁模就能满足工艺要求,并能缩短模具的制造周期,降低模具的制造成本。 所以本设计采用一模两件的无导向简单冲裁模。 3.2 结构形式的确定 3.2.1 操作方式选择 选择手工送料(单个毛坯)操作方式。 3.2.2 定位方式的选择 工件在模具中的定位主要考虑定位基准、上料方式、操作安全可靠等因素。 选择定位基准时应尽可能与设计基准重合,如果不重合,就需要根据尺寸链计算,重新分配公差,把设计尺寸换成工艺尺寸,但是这样会使零件的加工精度要求提高。当零件采用多工序分别在不同模具上冲压时,应尽量使各工序采用同一基准。 为使定位可靠,应选择精度高、冲压时不发生变形和移动的表面作为定位表面。冲压件上能够作用定位的表面随零件的形状不同而不同。 本设计采用定位板定位方式,见下图。 3.2.3 卸料方式 由于此设计采用单个毛坯,手动操作送进和定位,并且材料不是太硬,所以选择弹性卸料方式比较方便、合理。 4 工艺计算 4.1 凸、凹刃口尺寸计算 4.1.1 凸、凹模刃口尺寸计算的原则 ①设计基准落料以凹模为设计基准,间隙取在凸模上;冲孔以凸模为设计基准,间隙取在凹模上。 ②设计时间隙一律采用最小合理间隙值Z。 ③刃口尺寸的制造偏差方向单向注入实体内部。即磨损后,凸、凹模刃口尺寸变大的取δ;磨损后凸、凹模刃口尺寸变小的取-δ。 ④刃口尺寸制造偏差的大小简单形状,按IT6~IT7取值;复杂形状,取△;磨损后尺寸无变化,取△。 ⑤加工方法简单形状,分别加工;复杂形状,配合加工。 4.1.2 简单形状凸、凹模刃口尺寸的计算 ①检验。由分别加工的互换性要求采用较小的模具制造公差来满足下式 |δ||δ| Z≤Z 即 |δ||δ| ≤Z- Z 1-1-1 a、在电极板中按IT14取孔Ø8.33的偏差为0.36,公差△为0.36;孔Ø14.3的偏差为0.34,公差△为
展开阅读全文
收藏
下载资源

文库交流QQ群:630737895 在线文库交流群

联系客服QQ:1726005040  
   邮箱:[email protected]

 在线文库网 版权所有

青ICP备13000082号-5